Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Curr Neuropharmacol ; 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509672

BACKGROUND: Glioblastoma (GBM) represents an aggressive and common tumor of the central nervous system. The prognosis of GBM is poor, and despite a refined genetic and molecular characterization, pharmacological treatment is largely suboptimal. OBJECTIVE: Contribute to defining a therapeutic line in GBM targeting the mGlu3 receptor in line with the principles of precision medicine. METHODS: Here, we performed a computational analysis focused on the expression of type 3 and 5 metabotropic glutamate receptor subtypes (mGlu3 and mGlu5, respectively) in high- and low-grade gliomas. RESULTS: The analysis allowed the identification of a particular high-grade glioma type, characterized by a high expression level of both receptor subtypes and by other markers of excitatory and inhibitory neurotransmission. This so-called neurotransmitter-GBM (NT-GBM) also shows a distinct immunological, metabolic, and vascularization gene signature. CONCLUSION: Our findings might lay the groundwork for a targeted therapy to be specifically applied to this putative novel type of GBM.

2.
Neuropharmacology ; 238: 109642, 2023 11 01.
Article En | MEDLINE | ID: mdl-37392820

The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of Fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cß and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.


Angelman Syndrome , Autistic Disorder , Fragile X Syndrome , Mice , Animals , Phosphatidylinositol Phosphates/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Hydrolysis , Disease Models, Animal , Mice, Knockout , Fragile X Syndrome/metabolism , Carrier Proteins , Fragile X Mental Retardation Protein/metabolism
3.
Neuropharmacology ; 235: 109569, 2023 09 01.
Article En | MEDLINE | ID: mdl-37142158

Cellular responses to metabotropic glutamate (mGlu) receptor activation are shaped by mechanisms of receptor-receptor interaction. mGlu receptor subtypes form homodimers, intra- or inter-group heterodimers, and heteromeric complexes with other G protein-coupled receptors (GPCRs). In addition, mGlu receptors may functionally interact with other receptors through the ßγ subunits released from G proteins in response to receptor activation or other mechanisms. Here, we discuss the interactions between (i) mGlu1 and GABAB receptors in cerebellar Purkinje cells; (ii) mGlu2 and 5-HT2Aserotonergic receptors in the prefrontal cortex; (iii) mGlu5 and A2A receptors or mGlu5 and D1 dopamine receptors in medium spiny projection neurons of the indirect and direct pathways of the basal ganglia motor circuit; (iv) mGlu5 and A2A receptors in relation to the pathophysiology of Alzheimer's disease; and (v) mGlu7 and A1 adenosine or α- or ß1 adrenergic receptors. In addition, we describe in detail a novel form of non-heterodimeric interaction between mGlu3 and mGlu5 receptors, which appears to be critically involved in mechanisms of activity-dependent synaptic plasticity in the prefrontal cortex and hippocampus. Finally, we highlight the potential implication of these interactions in the pathophysiology and treatment of cerebellar disorders, schizophrenia, Alzheimer's disease, Parkinson's disease, l-DOPA-induced dyskinesias, stress-related disorders, and cognitive dysfunctions. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".


Alzheimer Disease , Parkinson Disease , Humans , Levodopa , Parkinson Disease/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Basal Ganglia/metabolism
4.
Front Pharmacol ; 13: 913210, 2022.
Article En | MEDLINE | ID: mdl-35721218

The epigenetic agents, L-acetylcarnitine (LAC) and L-methylfolate (MF) are putative candidates as add-on drugs in depression. We evaluated the effect of a combined treatment with LAC and MF in two different paradigms of chronic stress in mice and in human inducible pluripotent stem cells (hiPSCs) differentiated into dopaminergic neurons. Two groups of mice were exposed to chronic unpredictable stress (CUS) for 28 days or chronic restraint stress (CRS) for 21 day, and LAC (30 or 100 mg/kg) and/or MF (0.75 or 3 mg/kg) were administered i.p. once a day for 14 days, starting from the last week of stress. In both stress paradigms, LAC and MF acted synergistically in reducing the immobility time in the forced swim test and enhancing BDNF protein levels in the frontal cortex and hippocampus. In addition, LAC and MF acted synergistically in enhancing type-2 metabotropic glutamate receptor (mGlu2) protein levels in the hippocampus of mice exposed to CRS. Interestingly, CRS mice treated with MF showed an up-regulation of NFκB p65, which is a substrate for LAC-induced acetylation. We could also demonstrate a synergism between LAC and MF in cultured hiPSCs differentiated into dopamine neurons, by measuring dendrite length and number, and area of the cell soma after 3 days of drug exposure. These findings support the combined use of LAC and MF in the treatment of MDD and other stress-related disorders.

5.
Life (Basel) ; 12(3)2022 Mar 21.
Article En | MEDLINE | ID: mdl-35330215

Using an in vivo method for the assessment of polyphosphoinositide (PI) hydrolysis, we examine whether spatial learning and memory extinction cause changes in mGlu5 metabotropic glutamate receptor signaling in the hippocampus and prefrontal cortex. We use the following five groups of mice: (i) naive mice; (ii) control mice exposed to the same environment as learner mice; (iii) leaner mice, trained for four days in a water maze; (iv) mice in which memory extinction was induced by six trials without the platform; (v) mice that spontaneously lost memory. The mGlu5 receptor-mediated PI hydrolysis was significantly reduced in the dorsal hippocampus of learner mice as compared to naive and control mice. The mGlu5 receptor signaling was also reduced in the ventral hippocampus and prefrontal cortex of learner mice, but only with respect to naive mice. Memory extinction was associated with a large up-regulation of mGlu5 receptor-mediated PI hydrolysis in the three brain regions and with increases in mGlu5 receptor and phospholipase-Cß protein levels in the ventral and dorsal hippocampus, respectively. These findings support a role for mGlu5 receptors in mechanisms underlying spatial learning and suggest that mGlu5 receptors are candidate drug targets for disorders in which cognitive functions are impaired or aversive memories are inappropriately retained.

6.
J Neuroinflammation ; 18(1): 13, 2021 Jan 06.
Article En | MEDLINE | ID: mdl-33407565

BACKGROUND: Perinatal inflammation is a key factor of brain vulnerability in neonates born preterm or with intra-uterine growth restriction (IUGR), two leading conditions associated with brain injury and responsible for neurocognitive and behavioral disorders. Systemic inflammation is recognized to activate microglia, known to be the critical modulators of brain vulnerability. Although some evidence supports a role for metabotropic glutamate receptor 3 (mGlu3 receptor) in modulation of neuroinflammation, its functions are still unknown in the developing microglia. METHODS: We used a double-hit rat model of perinatal brain injury induced by a gestational low-protein diet combined with interleukin-1ß injections (LPD/IL-1ß), mimicking both IUGR and prematurity-related inflammation. The effect of LPD/IL-1ß on mGlu3 receptor expression and the effect of mGlu3 receptor modulation on microglial reactivity were investigated using a combination of pharmacological, histological, and molecular and genetic approaches. RESULTS: Exposure to LPD/IL-1ß significantly downregulated Grm3 gene expression in the developing microglia. Both transcriptomic analyses and pharmacological modulation of mGlu3 receptor demonstrated its central role in the control of inflammation in resting and activated microglia. Microglia reactivity to inflammatory challenge induced by LPD/IL-1ß exposure was reduced by an mGlu3 receptor agonist. Conversely, both specific pharmacological blockade, siRNA knock-down, and genetic knock-out of mGlu3 receptors mimicked the pro-inflammatory phenotype observed in microglial cells exposed to LPD/IL-1ß. CONCLUSIONS: Overall, these data show that Grm3 plays a central role in the regulation of microglial reactivity in the immature brain. Selective pharmacological activation of mGlu3 receptors may prevent inflammatory-induced perinatal brain injury.


Microglia/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Animals, Newborn , Brain Injuries/metabolism , Brain Injuries/pathology , Female , Gene Expression Profiling/methods , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/pathology , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/antagonists & inhibitors
7.
Front Psychiatry ; 10: 49, 2019.
Article En | MEDLINE | ID: mdl-30890967

Metabotropic glutamate (mGlu) receptors are considered as candidate drug targets for the treatment of schizophrenia. These receptors form a family of eight subtypes (mGlu1 to -8), of which mGlu1 and -5 are coupled to Gq/11, and all other subtypes are coupled to Gi/o. Here, we discuss the possibility that selective ligands of individual mGlu receptor subtypes may be effective in controlling the core symptoms of schizophrenia, and, in some cases, may impact mechanisms underlying the progression of the disorder. Recent evidence indicates that activation of mGlu1 receptors inhibits dopamine release in the meso-striatal system. Hence, selective positive allosteric modulators (PAMs) of mGlu1 receptors hold promise for the treatment of positive symptoms of schizophrenia. mGlu5 receptors are widely expressed in the CNS and regulate the activity of cells that are involved in the pathophysiology of schizophrenia, such as cortical GABAergic interneurons and microglial cells. mGlu5 receptor PAMs are under development for the treatment of schizophrenia and cater the potential to act as disease modifiers by restraining neuroinflammation. mGlu2 receptors have attracted considerable interest because they negatively modulate 5-HT2A serotonin receptor signaling in the cerebral cortex. Both mGlu2 receptor PAMs and orthosteric mGlu2/3 receptor agonists display antipsychotic-like activity in animal models, and the latter drugs are inactive in mice lacking mGlu2 receptors. So far, mGlu3 receptors have been left apart as drug targets for schizophrenia. However, activation of mGlu3 receptors boosts mGlu5 receptor signaling, supports neuronal survival, and drives microglial cells toward an antiinflammatory phenotype. This strongly encourages research of mGlu3 receptors in schizophrenia. Finally, preclical studies suggest that mGlu4 receptors might be targeted by novel antipsychotic drugs, whereas studies of mGlu7 and mGlu8 receptors in animal models of psychosis are still at their infancy.

8.
Front Pharmacol ; 9: 804, 2018.
Article En | MEDLINE | ID: mdl-30108503

mGlu5 receptor-mediated polyphosphoinositide (PI) hydrolysis is classically measured by determining the amount of radioactivity incorporated in inositolmonophosphate (InsP) after labeling of membrane phospholipids with radioactive inositol. Although this method is historically linked to the study of mGlu receptors, it is inappropriate for the assessment of mGlu5 receptor signaling in vivo. Using a new ELISA kit we showed that systemic treatment with the selective positive allosteric modulator (PAM) of mGlu5 receptors VU0360172 enhanced InsP formation in different brain regions of CD1 or C57Black mice. The action of VU0360172 was sensitive to the mGlu5 receptor, negative allosteric modulator (NAM), MTEP, and was abolished in mice lacking mGlu5 receptors. In addition, we could demonstrate that endogenous activation of mGlu5 receptors largely accounted for the basal PI hydrolysis particularly in the prefrontal cortex. This method offers opportunity for investigation of mGlu5 receptor signaling in physiology and pathology, and could be used for the functional screening of mGlu5 receptor PAMs in living animals.

9.
Pharmacol Res ; 132: 130-134, 2018 06.
Article En | MEDLINE | ID: mdl-29689315

Prolonged stress predisposes susceptible individuals to a number of physiological disorders including cardiovascular disease, obesity and gastrointestinal disorders, as well as psychiatric and neurodegenerative disorders. Preclinical studies have suggested that manipulation of the glucocorticoid milieu can trigger cellular, molecular and behavioral derangement resembling the hallmarks of Alzheimer's Disease (AD). For example, stress or glucocorticoid administration can increase amyloid ß precursor protein and tau phosphorylation which are involved in synaptic dysfunction and neuronal death associated with AD. Although since AD was first described in 1906 at a conference in Tubingen, Germany by Alois Alzheimer our knowledge of neuropathological and neurochemical alterations of AD has been impressively increased, at present, pharmacotherapy is symptomatic at best and has no influence on the progression of the disorder. It is generally believed that most of the drugs developed as disease modifiers have failed in clinical trials because treatment started too late, i.e., after the clinical onset of AD. Because AD pathology begins several years prior to the clinical diagnosis, it is imperative to identify subjects at high risk to develop the disorder. Consequently, the search for putative risk factors has gained importance. ApoE4, diabetes/metabolic syndrome, cardiovascular disorders, and a low cognitive reserve are established risk factors for AD. The focus of this review is on stress and glucocorticoids as potential factors increasing the risk to develop AD.


Alzheimer Disease/etiology , Stress, Psychological/complications , Animals , Glucocorticoids , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Risk Factors
10.
Front Neurosci ; 12: 154, 2018.
Article En | MEDLINE | ID: mdl-29615849

We studied group-I metabotropic glutamate (mGlu) receptors in Pahenu2 (ENU2) mice, which mimic the genetics and neurobiology of human phenylketonuria (PKU), a metabolic disorder characterized, if untreated, by autism, and intellectual disability (ID). Male ENU2 mice showed increased mGlu5 receptor protein levels in the hippocampus and corpus striatum (but not in the prefrontal cortex) whereas the transcript of the mGlu5 receptor was unchanged. No changes in mGlu1 receptor mRNA and protein levels were found in any of the three brain regions of ENU2 mice. We extended the analysis to Homer proteins, which act as scaffolds by linking mGlu1 and mGlu5 receptors to effector proteins. Expression of the long isoforms of Homer was significantly reduced in the hippocampus of ENU2 mice, whereas levels of the short Homer isoform (Homer 1a) were unchanged. mGlu5 receptors were less associated to immunoprecipitated Homer in the hippocampus of ENU2 mice. The lack of mGlu5 receptor-mediated long-term depression (LTD) in wild-type mice (of BTBR strain) precluded the analysis of hippocampal synaptic plasticity in ENU2 mice. We therefore performed a behavioral analysis to examine whether pharmacological blockade of mGlu5 receptors could correct behavioral abnormalities in ENU2 mice. Using the same apparatus we sequentially assessed locomotor activity, object exploration, and spatial object recognition (spatial novelty test) after displacing some of the objects from their original position in the arena. Systemic treatment with the mGlu5 receptor antagonist, MPEP (20 mg/kg, i.p.), had a striking effect in the spatial novelty test by substantially increasing the time spent in exploring the displaced objects in ENU2 mice (but not in wild-type mice). These suggest a role for mGlu5 receptors in the pathophysiology of ID in PKU and suggest that, also in adult untreated animals, cognitive dysfunction may be improved by targeting these receptors with an appropriate therapy.

11.
Curr Opin Pharmacol ; 38: 59-64, 2018 02.
Article En | MEDLINE | ID: mdl-29525720

In spite of the recent advancement in the molecular characterization of malignant gliomas and medulloblastomas, the treatment of primary brain tumors remains suboptimal. The use of small molecule inhibitors of intracellular signaling pathways, inhibitors of angiogenesis, and immunotherapic agents is limited by systemic adverse effects, limited brain penetration, and, in some cases, lack of efficacy. Thus, adjuvant chemo-therapy and radiotherapy still remain the gold standard in the treatment of grade-IV astrocytoma (glioblastoma multiforme) and medulloblastoma. We review evidence that supports the development of mGlu3 receptor antagonists as add-on drugs in the treatment of malignant gliomas. These drugs appear to display pleiotropic effect on tumor cells, affecting proliferation, differentiation, and response to chemotherapy. mGlu1 and mGlu4 receptors could also be targeted by potential anticancer agents in the treatment of malignant gliomas and medulloblastoma, but extensive research is required for target validation.


Brain Neoplasms/metabolism , Glioma/metabolism , Medulloblastoma/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioma/drug therapy , Humans , Medulloblastoma/drug therapy
12.
Neuropharmacology ; 128: 301-313, 2018 Jan.
Article En | MEDLINE | ID: mdl-29079293

mGlu5 receptors are involved in mechanisms of activity-dependent synaptic plasticity, and are targeted by drugs developed for the treatment of CNS disorders. We report that mGlu3 receptors, which are traditionally linked to the control of neurotransmitter release, support mGlu5 receptor signaling in neurons and largely contribute to the robust mGlu5 receptor-mediated polyphosphoinositide hydrolysis in the early postnatal life. In cortical pyramidal neurons, mGlu3 receptor activation potentiated mGlu5 receptor-mediated somatic Ca2+ mobilization, and mGlu3 receptor-mediated long-term depression in the prefrontal cortex required the endogenous activation of mGlu5 receptors. The interaction between mGlu3 and mGlu5 receptors was also relevant to mechanisms of neuronal toxicity, with mGlu3 receptors shaping the influence of mGlu5 receptors on excitotoxic neuronal death. These findings shed new light into the complex role played by mGlu receptors in physiology and pathology, and suggest reconsideration of some of the current dogmas in the mGlu receptor field.


Central Nervous System/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Metabotropic Glutamate/metabolism , Amino Acids/pharmacology , Animals , Animals, Newborn , Astrocytes/drug effects , Astrocytes/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cells, Cultured , Central Nervous System/cytology , Embryo, Mammalian , Excitatory Amino Acid Agents/pharmacology , Female , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Humans , Hydrolysis/drug effects , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Mice , Mice, Inbred C57BL , N-Methylaspartate/pharmacology , Neurons/drug effects , Neurons/metabolism , Phosphatidylinositol Phosphates/metabolism , Rats , Receptor, Metabotropic Glutamate 5/genetics , Receptors, Metabotropic Glutamate/genetics
13.
Pharmacol Res ; 117: 46-53, 2017 03.
Article En | MEDLINE | ID: mdl-27890550

Paradoxical sleep deprivation in rats is considered as an experimental animal model of mania endowed with face, construct, and pharmacological validity. We induced paradoxical sleep deprivation by placing rats onto a small platform surrounded by water. This procedure caused the animal to fall in the water at the onset of REM phase of sleep. Control rats were either placed onto a larger platform (which allowed them to sleep) or maintained in their home cage. Sleep deprived rats showed a substantial reduction in type-2 metabotropic glutamate (mGlu2) receptors mRNA and protein levels in the hippocampus, but not in the prefrontal cortex or corpus striatum, as compared to both groups of control rats. No changes in the expression of mGlu3 receptor mRNA levels or mGlu1α and mGlu5 receptor protein levels were found with exception of an increase in mGlu1α receptor levels in the striatum of SD rats. Moving from these findings we treated SD and control rats with the selective mGlu2 receptor enhancer, BINA (30mg/kg, i.p.). SD rats were also treated with sodium valproate (300mg/kg, i.p.) as an active comparator. Both BINA and sodium valproate were effective in reversing the manic-like phenotype evaluated in an open field arena in SD rats. BINA treatment had no effect on motor activity in control rats, suggesting that our findings were not biased by a non-specific motor-lowering activity of BINA. These findings suggest that changes in the expression of mGlu2 receptors may be associated with the enhanced motor activity observed with mania.


Hippocampus/metabolism , Receptors, Metabotropic Glutamate/metabolism , Sleep Deprivation/metabolism , Sleep/physiology , Animals , Male , Motor Activity/physiology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
14.
Neuropharmacology ; 113(Pt A): 343-353, 2017 02.
Article En | MEDLINE | ID: mdl-27769854

We studied the interaction between mGlu7 and α1-adrenergic receptors in heterologous expression systems, brain slices, and living animals. L-2-Amino-4-phosphonobutanoate (L-AP4), and l-serine-O-phosphate (L-SOP), which activate group III mGlu receptors, restrained the stimulation of polyphosphoinositide (PI) hydrolysis induced by the α1-adrenergic receptor agonist, phenylephrine, in HEK 293 cells co-expressing α1-adrenergic and mGlu7 receptors. The inibitory action of L-AP4 was abrogated by (i) the mGlu7 receptor antagonist, XAP044; (ii) the C-terminal portion of type-2 G protein coupled receptor kinase; and (iii) the MAP kinase inhibitors, UO126 and PD98059. This suggests that the functional interaction between mGlu7 and α1-adrenergic receptors was mediated by the ßγ-subunits of the Gi protein and required the activation of the MAP kinase pathway. Remarkably, activation of neither mGlu2 nor mGlu4 receptors reduced α1-adrenergic receptor-mediated PI hydrolysis. In mouse cortical slices, both L-AP4 and L-SOP were able to attenuate norepinephrine- and phenylephrine-stimulated PI hydrolysis at concentrations consistent with the activation of mGlu7 receptors. L-AP4 failed to affect norepinephrine-stimulated PI hydrolysis in cortical slices from mGlu7-/- mice, but retained its inhibitory activity in slices from mGlu4-/- mice. At behavioural level, i.c.v. injection of phenylephrine produced antidepressant-like effects in the forced swim test. The action of phenylephrine was attenuated by L-SOP, which was inactive per se. Finally, both phenylephrine and L-SOP increased corticosterone levels in mice, but the increase was halved when the two drugs were administered in combination. Our data demonstrate that α1-adrenergic and mGlu7 receptors functionally interact and suggest that this interaction might be targeted in the treatment of stress-related disorders.


Receptors, Adrenergic, alpha-1/metabolism , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction/physiology , Adrenergic alpha-1 Receptor Agonists/metabolism , Adrenergic alpha-1 Receptor Agonists/pharmacology , Animals , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/metabolism , Excitatory Amino Acid Agonists/pharmacology , HEK293 Cells , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Receptors, Metabotropic Glutamate/agonists , Signal Transduction/drug effects
15.
Pharmacol Res Perspect ; 3(3): e00135, 2015 Jun.
Article En | MEDLINE | ID: mdl-26171219

Recent findings indicate that fingolimod, the first oral drug approved for the treatment of multiple sclerosis (MS), acts as a direct inhibitor of histone deacetylases (HDACs) and enhances the production of brain-derived neurotrophic factor (BDNF) in the CNS. Both mechanisms are relevant to the pathophysiology and treatment of major depression. We examined the antidepressant activity of fingolimod in mice subjected to chronic unpredictable stress (CUS), a model of reactive depression endowed with face and pharmacological validity. Chronic treatment with fingolimod (3 mg kg(-1), i.p., once a day for 4 weeks) reduced the immobility time in the forced swim test (FST) in a large proportion of CUS mice. This treatment also caused anxiogenic-like effects in the social interaction test without affecting anxiety-like behavior in the elevated plus maze or spatial learning in the water maze. CUS mice showed reduced BDNF levels and enhanced HDAC2 levels in the hippocampus. These changes were reversed by fingolimod exclusively in mice that showed a behavioral response to the drug in the FST. Fingolimod treatment also enhanced H3 histone K14-acetylation and adult neurogenesis in the hippocampus of CUS mice. Fingolimod did not affect most of the parameters we have tested in unstressed control mice. The antidepressant-like activity of fingolimod was confirmed in mice chronically treated with corticosterone. These findings show for the first time that fingolimod exerts antidepressant-like effect acting in a "disease-dependent" manner, and raise the interesting possibility that the drug could relieve depressive symptoms in MS patients independently of its disease-modifying effect on MS.

16.
Neuropharmacology ; 86: 133-44, 2014 Nov.
Article En | MEDLINE | ID: mdl-25063582

LY379268 and LY354740, two agonists of mGlu2/3 metabotropic glutamate receptors, display different potencies in mouse models of schizophrenia. This differential effect of the two drugs remains unexplained. We performed a proteomic analysis in cultured cortical neurons challenged with either LY379268 or LY354740. Among the few proteins that were differentially influenced by the two drugs, Rab GDP dissociation inhibitor-ß (Rab GDIß) was down-regulated by LY379268 and showed a trend to an up-regulation in response to LY354740. In cultured hippocampal neurons, LY379268 selectively down-regulated the α isoform of Rab GDI. Rab GDI inhibits the activity of the synaptic vesicle-associated protein, Rab3A, and is reduced in the brain of schizophrenic patients. We examined the expression of Rab GDI in mice exposed to prenatal stress ("PRS mice"), which have been described as a putative model of schizophrenia. Rab GDIα protein levels were increased in the hippocampus of PRS mice at postnatal days (PND)1 and 21, but not at PND60. At PND21, PRS mice also showed a reduced depolarization-evoked [(3)H]d-aspartate release in hippocampal synaptosomes. The increase in Rab GDIα levels in the hippocampus of PRS mice was reversed by a 7-days treatment with LY379268 (1 or 10 mg/kg, i.p.), but not by treatment with equal doses of LY354740. These data strengthen the validity of PRS mice as a model of schizophrenia, and show for the first time a pharmacodynamic difference between LY379268 and LY354740 which might be taken into account in an attempt to explain the differential effect of the two drugs across mouse models.


Amino Acids/pharmacology , Antipsychotic Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds/pharmacology , Guanine Nucleotide Dissociation Inhibitors/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Animals , Cells, Cultured , D-Aspartic Acid/metabolism , Disease Models, Animal , Epigenesis, Genetic , Female , Hippocampus/drug effects , Hippocampus/growth & development , Hippocampus/metabolism , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects , Proteomics/methods , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism , Restraint, Physical
17.
Drug Des Devel Ther ; 8: 555-68, 2014.
Article En | MEDLINE | ID: mdl-24876766

New oral drugs have considerably enriched the therapeutic armamentarium for the treatment of multiple sclerosis. This review focuses on the molecular pharmacodynamics of fingolimod, dimethyl fumarate (BG-12), laquinimod, and teriflunomide. We specifically comment on the action of these drugs at three levels: 1) the regulation of the immune system; 2) the permeability of the blood-brain barrier; and 3) the central nervous system. Fingolimod phosphate (the active metabolite of fingolimod) has a unique mechanism of action and represents the first ligand of G-protein-coupled receptors (sphingosine-1-phosphate receptors) active in the treatment of multiple sclerosis. Dimethyl fumarate activates the nuclear factor (erythroid-derived 2)-related factor 2 pathway of cell defense as a result of an initial depletion of reduced glutathione. We discuss how this mechanism lies on the border between cell protection and toxicity. Laquinimod has multiple (but less defined) mechanisms of action, which make the drug slightly more effective on disability progression than on annualized relapse rate in clinical studies. Teriflunomide acts as a specific inhibitor of the de novo pyrimidine biosynthesis. We also discuss new unexpected mechanisms of these drugs, such as the induction of brain-derived neurotrophic factor by fingolimod and the possibility that laquinimod and teriflunomide regulate the kynurenine pathway of tryptophan metabolism.


Multiple Sclerosis/drug therapy , Administration, Oral , Animals , Blood-Brain Barrier/drug effects , Crotonates/pharmacology , Dimethyl Fumarate , Fingolimod Hydrochloride , Fumarates/pharmacology , Humans , Hydroxybutyrates , Immune System/drug effects , NF-E2-Related Factor 2/physiology , Nitriles , Propylene Glycols/pharmacology , Quinolones/pharmacology , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Toluidines/pharmacology
18.
J Neurochem ; 125(5): 649-56, 2013 Jun.
Article En | MEDLINE | ID: mdl-22849384

The α2 δ subunit of voltage-sensitive calcium channels (VSCCs) is the molecular target of pregabalin and gabapentin, two drugs marked for the treatment of focal epilepsy, neuropathic pain, and anxiety disorders. Expression of the α2 δ subunit is up-regulated in the dorsal horns of the spinal cord in models of neuropathic pain, suggesting that plastic changes in the α2 δ subunit are associated with pathological states. Here, we examined the expression of the α2 δ-1 subunit in the amygdala, hippocampus, and frontal cortex in the trimethyltiazoline (TMT) mouse model of innate anxiety. TMT is a volatile molecule present in the feces of the rodent predator, red fox. Mice that show a high defensive behavior during TMT exposure developed anxiety-like behavior in the following 72 h, as shown by the light-dark test. Anxiety was associated with an increased expression of the α2 δ-1 subunit of VSCCs in the amygdaloid complex at all times following TMT exposure (4, 24, and 72 h). No changes in the α2 δ-1 protein levels were seen in the hippocampus and frontal cortex of mice exposed to TMT. Pregabalin (30 mg/kg, i.p.) reduced anxiety-like behavior in TMT-exposed mice, but not in control mice. These data offer the first demonstration that the α2 δ-1 subunit of VSCCs undergoes plastic changes in a model of innate anxiety, and supports the use of pregabalin as a disease-dependent drug in the treatment of anxiety disorders.


Amygdala/metabolism , Anxiety/metabolism , Calcium Channels/biosynthesis , Gene Expression Regulation , Odorants , Predatory Behavior/physiology , Animals , Anxiety/psychology , Calcium Channels/genetics , Foxes , Male , Mice , Up-Regulation/genetics
19.
PLoS One ; 6(1): e16447, 2011 Jan 27.
Article En | MEDLINE | ID: mdl-21304589

The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1), an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of ß-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central nervous system. Drugs that rescue the canonical Wnt pathway may attenuate hippocampal damage in major depression and other stress-related disorders.


Hippocampus/pathology , Intercellular Signaling Peptides and Proteins/genetics , Stress, Physiological , Transcriptional Activation , Wnt Proteins/antagonists & inhibitors , Adrenal Cortex Hormones/pharmacology , Animals , Cells, Cultured , Gene Expression Regulation/drug effects , Intercellular Signaling Peptides and Proteins/deficiency , Mice , Neurogenesis , Neurons/pathology
20.
Platelets ; 19(7): 537-42, 2008 Nov.
Article En | MEDLINE | ID: mdl-18979366

Cigarette smoking is a recognized risk factor for cardiovascular diseases and has been implicated in the pathogenesis of atherosclerosis and thrombotic events. In athero-thrombotic diseases, the extracellular adenine nucleotides play an important role by triggering a range of effects such as the recruitment and activation of platelets, endothelial cell activation and vasoconstriction. NTPDase, a plasma membrane-bound enzyme, is the most relevant enzyme involved in the hydrolysis of extracellular tri- and di-phosphate nucleotides to adenosine monophosphate, which is further degraded by 5'ectonucleotidase to the anti-thrombotic and anti-inflammatory mediator adenosine. Thus, the preserved activity of these enzymes, regulating the extracellular concentrations of nucleotides, is critical in thromboregulatory functions. In the present in vitro study, performed on human platelets suspended in undiluted or diluted aqueous cigarette smoke extract (aCSE), we demonstrated that undiluted and 1 : 2 diluted aCSE is able to significantly reduce ADP hydrolysis (-24% and 12%, respectively) by intact human platelets. ATP degradation was also reduced (-31%) by undiluted aCSE. Conversely, aCSE did not alter platelet AMP hydrolysis. Results obtained by using N-acetylcysteine, a thiol-containing antioxidant, suggest that stable oxidants present in aCSE are responsible for the platelet NTPDase inhibition induced by aCSE. The decreased adenine nucleotide degradation could play a significant role in the extensive platelet activation and vascular inflammation observed in chronic smokers.


Adenine Nucleotides/metabolism , Apyrase/antagonists & inhibitors , Blood Platelets/metabolism , Smoking/adverse effects , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Antigens, CD , Humans , Hydrolysis , Oxidants/pharmacology , Smoking/metabolism
...